

November 3, 1999

Baker Environmental, Inc. Airport Office Park, Building 3 420 Rouser Road Coraopolis, Pennsylvania 15108

(412) 269-6000 FAX (412) 269-2002

Commander Atlantic Division Naval Facilities Engineering Command 1510 Gilbert Street (Building N-26) Norfolk, Virginia 23511-2699

Attn: Ms. Katherine H. Landman

Navy Technical Representative

Code 18232

Re:

Contract N62470-89-D-4814

Navy CLEAN, District III

Contract Task Order (CTO) 0356 Operable Unit No. 16 (Site 89)

MCB, Camp Lejeune, North Carolina

#### Dear Ms. Landman:

Baker Environmental, Inc. (Baker) is pleased to submit this letter report for Operable Unit No. 16, Site 89. The sections that follow provide details concerning Site 89, with specific focus on the Defense Reauthorization and Marketing Office (DRMO) area. This letter report has been prepared to summarize previous studies at Site 89 and present a brief description of general trends that we have observed in the data collected to date.

#### Introduction

Several investigative activities have been completed at Site 89; all confirming the presence of volatile organic compounds (VOCs) in soil and groundwater. This report has been prepared with specific attention given to the area of Site 89 known as the DRMO. Through various investigations, it has become apparent that the DRMO area of Site 89 is the area most affected by VOC contamination.

Further investigation is required to accurately identify the source of VOC contamination at the site, and to determine potential pathways for contaminate migration to Edwards Creek. This letter report was initiated by the detection of a high concentration of 1,1,2,2-tetrachloroethane (PCA) in groundwater samples obtained in April 1999. A concentration of 30,000 µg/L was detected in a groundwater sample collected from monitoring well IR89-MW02. There were no detections of this contaminant at any location within the DRMO before this sampling event. The compound 1,1,2,2-PCA is a human carcinogen, and if ingested at this concentration, would generate cancer risks greater than the acceptable risk range according to USEPA risk assessment models.

The following sections provide a brief history of the DRMO area and describe the investigative activities at Site 89. The material presented below illustrates trends in the data that indicate further investigation is necessary. It is important to note that the text focuses on VOCs, although samples were analyzed for other parameters under some investigations.

Ms. Katherine H. Landman November 3, 1999 Page 2

#### **History of the DRMO**

Prior to 1987, the southern area of the DRMO was used for heavy vehicle storage and maintenance. Base personnel reported heavy use of solvents during that time. The solvents included acetone, trichloroethene (TCE), and methyl ethyl ketone. DRMO operations have been in this location since 1990.

In the early 1990s fuel bladders (mobile storage tanks) were placed on site with the intent that the bladders be shredded and subsequently disposed following their use. The bladders ranged in size from 600 gallons to 20,000 gallons and were used in training exercises for helicopter refueling. Base personnel reported that the bladders were emptied, cleaned with solvents, re-emptied, and capped prior to storage at the DRMO. Acetone was reportedly used, and possibly 1,1,2,2-PCA. The bladders were stored for 3 to 4 years in a pile approximately 75 feet in diameter by 25 feet high. The pile was located west of what is now the oil changing area. This area is shown on Figure 1. A shredder was brought on site and located immediately north of the bladder pile. The bladders were shredded into small cubes and placed into roll-off boxes. During shredding operations liquids were observed escaping from the bladders. These liquids were not contained or removed.

#### **Summary of Previous Investigations**

Three previous investigations have been completed at Site 89, including:

- Phase I and II Remedial Investigation (RI) August 1996 and May 1997
- MCB, Camp Lejeune Monitoring Program April 1999
- Immediate Response Field Effort June/July 1999

#### Phase I and II RI – August 1996 and May 1997

The RI was conducted in two phases; August 1996 and May 1997. The investigation included the collection of soil, groundwater, surface water, and sediment samples. These samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), metals, and pesticides/polychlorinated biphenols (PCBs).

The VOCs detected in soil samples included 1,1,2,2-PCA, 1,2-dichloroethene (DCE), 2-butanone, acetone, benzene, carbon disulfide, tetrachloroethene (PCE), toluene, and TCE. The compounds 2-butanone and carbon disulfide are not known to have been related to previous operations and are therefore assumed to be a result of laboratory contamination and the use of potable water during drilling operations. None of the VOCs exceeded the Region III RBCs for soil; however, several detections of TCE exceeded the screening criteria for transfer of soil contaminants to groundwater. The majority of detections were present in samples collected during the installation of monitoring well clusters IR89-MW01 and IR89-MW03. Both monitoring wells are located within the DRMO area, near existing wash racks.

The groundwater investigation at Site 89 entailed the collection of samples from the surficial and Castle Hayne aquifers. As shown on Table 1, six VOCs were detected in the groundwater samples collected from the select wells at Site 89. They included, 1,1,2,2-PCA, cis-1,2-DCE, trans-1,2-DCE, PCE, TCE, and vinyl chloride (VC). The majority of the detections were from shallow monitoring wells within the DRMO near the existing wash racks.

Ms. Katherine H. Landman November 3, 1999 Page 3

A total of ten surface water samples were collected from Edwards Creek at Site 89. As provided on Table 2, nine volatile compounds were detected in the surface water samples, including 1,1,2,2-PCA, 1,2-DCE (total), methylene chloride, chloroform, cis-1,2-DCE, trans-1,2-DCE, PCE, TCE, and VC. The sample locations with the highest number of maximum detections were IR89-SW02 and IR89-SW04. These stations are located south and hydraulically downgradient of the DRMO area. Four of the compounds, including 1,1,2,2-PCA, PCE, TCE, and VC were detected at concentrations exceeding Federal Ambient Water Quality Criteria (AWQCs).

Ten sediment samples were collected from five locations in Edwards Creek under the Phase II RI. The samples were collected with a sediment corer at depths of zero to six inches and six to twelve inches below the streambed. Sediment samples were analyzed at a fixed based laboratory and a mobile laboratory. Nine VOCs were detected in the samples. The majority of the detections occurred in the zero to six-inch sample depth. The detected compounds included 1,1,2,2-PCA, 1,1,2-TCA, 1,1-DCE, 1,2-DCE (total), cis-1,2-DCE, trans-1,2-DCE, toluene, TCE, and VC. At present, there are no sediment screening levels for sediment in USEPA Region IV. Sediment samples were not collected during the April 1999 Monitoring Program sampling event, or the June/July immediate response field effort. Because there is not enough data to show trends, the data is not presented on a table.

#### Monitoring Program - April 1999:

Groundwater samples at Site 89 are collected on a semi-annual basis as part of the base-wide groundwater monitoring program at Camp Lejeune. The first round of sampling for Site 89 under the monitoring program occurred in April 1999. The monitoring program at Site 89 is intended to detect changes in groundwater contaminant concentrations and monitor contaminant migration. In addition, the program provides data used in evaluating natural attenuation processes. Nine groundwater and four surface water samples were obtained during the first round of sampling at Site 89. Each of the samples were analyzed for VOCs. (Note that groundwater samples were also analyzed for natural attenuation parameters; however, these results are not relevant to this discussion and are not in this letter report.)

Of the nine groundwater samples collected at Site 89, five were from within or near the DRMO area (IR89-MW02, IR89-MW03, IR89-MW03IW, IR89-MW04, and IR89-MW04IW). Ten VOCs were detected from these select monitoring wells, including VC, acetone, methylene chloride, 2-butanone, TCE, cis-1,2-DCE. trans-1,2-DCE, PCE, 1,1,2,2-PCA, and 1,1,2-TCA. The compounds methylene chloride and 2-butanone are considered laboratory artifacts and not site contaminants. The concentrations in the groundwater samples are compared to relevant standards on Table 1. As shown by the information presented on the table, nearly all of the detected contaminants exceeded Federal Maximum Contaminant Levels (MCLs) and/or North Carolina Water Quality Standards (NCWQS) for groundwater. A detection of 1,1,2,2-PCA at 30,000 µg/L was identified during the April 1999 monitoring effort in the sample obtained from monitoring well IR89-MW02. The compound 1,1,2,2-PCA is a class C (possible human) carcinogen. If the ingestion pathway was evaluated under a drinking water scenario, the detected concentration of PCA would cause extremely high cancer risks. (i.e., Hazard Indices of 7.0 x 10<sup>-2</sup> and 3.3 x 10<sup>-2</sup> for adults and young children, respectively). These values are above the USEPA acceptable risk range of 1.0 x 10<sup>-6</sup> to 1.0 x 10<sup>-4</sup>. Possible industrial uses of 1,1,2,2-PCA include the following: nonflammable solvent for fats, oils, waxes, resins, cellulose acetate. rubber, coal, phosphorus, and sulfur; the manufacturing of paint, varnish, and rust removers; soil sterilization, weed killer, and insecticide formulations. The compound 1,1,2,2-PCA is a strong narcotic and poisons the liver.

Ms. Katherine H. Landman November 3, 1999 Page 4

Eight VOCs were detected in the four surface water samples collected from Edwards Creek as part of the April 1999 monitoring program. These include VC, acetone, methylene chloride, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1,2,2-PCA, and 1,1,2-TCA. Of these contaminants for which there are Federal or State water quality standards, all detections except for one exceeded Federal Ambient Water Quality Standards. The detections for 1,1,2,2-PCA in samples IR89-SW04 and IR89-SW11 also exceeded the applicable NCWQS for surface water. These standards and contaminant detections are presented in Table 2.

#### Immediate Response Field Effort - June/July 1999:

As described above, an elevated concentration of 1,1,2,2-PCA (30,000  $\mu g/L$ ) was detected in the groundwater sample from shallow monitoring well IR89-MW02 (April 1999 data). Baker informed the LANTDIV Navy Technical Representative (NTR) of this concentration, discussed the significance of the detection, the potential impact to Edwards Creek, and the potential for a continued source of VOCs present at the site.

As a result of this discussion, Baker was requested to perform additional investigative activities at Site 89. An immediate response investigation was completed in June/July of 1999. Activities included the installation of permanent monitoring wells and associated groundwater sampling, the collection of soil samples, and the collection of surface water samples. Attachment A includes several site photographs taken as part of the field investigation. In summary, the following tasks were completed as part of the immediate response effort:

- A groundwater sample was obtained from existing monitoring well IR89-MW02 to verify the detection and magnitude of 1,1,2,2-PCA concentrations within the shallow aquifer.
- Monitoring well IR89-MW08 was installed approximately 200 feet southeast of existing monitoring well IR89-MW02. A groundwater sample was collected to determine if 1,1,2,2-PCA had migrated via the shallow aquifer toward the existing drainage ditch which discharges immediately to Edwards Creek.
- A monitoring well cluster (including one shallow and one intermediate well) was installed directly adjacent to Edwards Creek. The cluster was positioned immediately upstream of the railroad crossing (White Street Extension) to determine if 1,1,2,2-PCA has migrated to Edwards Creek via the shallow or the intermediate aquifer.
- Soil samples were collected during the installation of the shallow monitoring wells. The samples were obtained at interval of 1 to 3 feet (ft) below the ground surface (bgs) and at 3 to 5 ft bgs.
- Surface water samples were obtained from three locations in Edwards Creek. One sample each from upstream and downstream of the railroad crossing (White Street Extension), and one sample approximately 250 feet downstream of the crossing.

During the installation of monitoring wells IR89-MW08 and IR89-MW09, soil samples were collected from the 1-3 foot and 3-5 foot depths. A duplicate analysis was performed for IR89-MW09-02. As illustrated on Figure 2, eight VOCs were detected in the soil samples (including the duplicate). These include: acetone, trans-1,2,-DCE, cis-1,2-DCE, TCE, 1,1,2-TCA, PCE, 1,1,2,2-PCA, and xylenes (total). The 1-3 foot sample collected from IR89-MW09 had the highest detection of 1,1,2,2-PCA at 29,000  $\mu$ g/kg. The concentration of 1,1,2,2-PCA in the 3-5 foot sample from IR89-MW09 was 27,000  $\mu$ g/kg. This sample also had the highest concentration of TCE at 2,000  $\mu$ g/kg. The concentrations for each contaminant were compared to the USEPA Region III risk-based concentrations (RBCs) for residential and industrial scenarios, and for the

Ms. Katherine H. Landman November 3, 1999 Page 5

transfer of contaminants from soil to groundwater. Concentrations of 1,1,2-TCA, PCE, and 1,2,2,2-PCA exceeded the applicable industrial and/or residential RBCs. All of the detected concentrations of 1,1,2-TCA, PCE, 1,1,2,2-PCA, and TCE exceeded the screening level for being transferred from soil to groundwater. The exceedences are presented in Table 3. The calculated USEPA soil to groundwater transfer soil screening levels are presented on Table 4.

The analytical results for the groundwater and surface water samples are presented on Figure 3. Four groundwater samples were collected at Site 89 from monitoring wells IR89-MW02, IR89-MW08, IR89-MW09, and IR89-MW09IW. A duplicate analysis was performed for the sample obtained from IR89-MW02. As can be seen on the figure, significant detections of VOCs were noted in the samples obtained from the monitoring wells. Nine VOCs were detected, including VC, acetone, cis-1,2-DCE, trans-1,2-DCE, 1,1,2-TCA, 1,1,2,2-PCA, TCE, benzene, and PCE. Although many of the compounds were detected at low concentrations, TCE detections exceeded the Federal MCL and the NCWOS at every well, with the highest concentration being 59,000 µg/L from IR89-MW09. This monitoring well is located at the extreme southern point of the site adjacent to Edwards Creek. High concentrations of 1,1,2,2-PCA were detected in the sample and the duplicate sample collected from IR89-MW02. The detected concentrations were 46,000 µg/L and 47,000 µg/L for the sample and duplicate sample, respectively. If groundwater were ingested at a concentration of 47,000 ug/L of 1.1.2.2-PCA, a potential cancer risk of  $1.1 \times 10^{-1}$  for adults and  $5.1 \times 10^{-2}$ for children would result. There are no State or Federal groundwater standards for 1,1,2,2-PCA. Overall, at least one or more detections of the following contaminants exceeded the NCWOS, Federal MCLs, or both: VC, cis-1,2-DCE, trans-1,2-DCE, 1,1,2-TCA, TCE, and PCE. Exceedences of standards for samples collected from IR89-MW02 are shown on Table 1. There is no established MCL or NCWOS for 1,1,2,2-PCA.

Three surface water samples were collected from Edwards Creek as part of the immediate response field effort. As depicted on Figure 3, each of the surface water samples identified VOCs, which is consistent with previous sampling efforts in the stream. Eleven VOCs were detected, including VC, acetone, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, 1,1,2,2-PCA, TCE, 1,1,2-TCA, benzene, toluene, and chlorobenzene. Of the contaminants that have a State or Federal standard, all exceeded Federal AWQS except for the detections of toluene and chlorobenzene. Detections of 1,1,2,2-PCA and TCE also exceeded the NCWQS. These exceedences are provided on Table 2.

#### **Data Trends and Indications**

An evaluation of the VOC detections in groundwater indicates that two shallow monitoring wells in particular have had an increase in concentrations of contaminants. The concentrations of TCE, cis-1,2-DCE, trans-1,2-DCE, and 1,1,2,2-PCA have significantly increased in monitoring well IR89-MW02 since the Phase I RI sampling event. These detections are shown on Table 1. The compound 1,1,2,2-PCA was not detected within the DRMO during the Phase I RI in 1996, but was first detected at a very high concentration during the April 1999 monitoring program. As described above, this monitoring well was sampled during the Phase I RI, the April 1999 sampling event, and in the June/July immediate response effort. Each detection of VOCs in the three samples obtained from IR89-MW02 exceeded the Federal MCL, the NCWQS, or both (there are no standards established for 1,1,2,2-PCA in groundwater). This increase in concentrations of VOCs suggests an existing source may be present in the vicinity of IR89-MW02. Concentrations of VC, acetone, methylene chloride, cis-1,2-DCE, trans-1,2-DCE, PCE, and TCE have also increased in monitoring well IR89-MW04 located southeast of the DRMO. This monitoring well was only sampled during the Phase II RI, and during the April 1999 sampling event. In each case, all of the detected VOCs (except for acetone) exceeded the Federal MCL, the NCWQS, or both.

Ms. Katherine H. Landman November 3, 1999 Page 6

Intermediate monitoring wells IR89-MW03IW and IR89-MW04IW were sampled during the Phase II RI and during the April 1999 sampling event. TCE was the main contaminant detected from samples obtained at these two monitoring wells during the Phase II RI. In the April 1999 sampling event, the concentration of TCE did not exhibit an increase in concentration, but additional contaminants were detected, including cis-1,2-DCE and trans-1,2-DCE. The presence of these compounds may suggest natural attenuation processes are occurring in the intermediate aquifer. However, the concentrations exceeded both Federal MCLs and NCWQS.

Monitoring wells IR89-MW08, IR89-MW09, and IR89-MW09IW were installed and sampled during the immediate response effort. Monitoring well IR89-MW08 is located adjacent to a drainage ditch leading from the wash rack area in the eastern portion of the DRMO, discharging to Edwards Creek. Monitoring wells IR89-MW09 and IR89-MW09IW are located in the southern portion of the site adjacent to Edwards Creek. Samples collected at monitoring wells IR89-MW08 and IR89-MW09IW exhibited low concentrations of 1,1,2,2-PCA (120 μg/L and 25 μg/L, respectively). The compound 1,1,2,2-PCA was not detected in the sample collected from IR89-MW09. However, a sample collected from this location showed detections of cis-1,2-DCE, trans-1,2-DCE and TCE at 5,000 μg/L, 1,200 μg/L, and 59,000 μg/L, respectively. These concentrations are above Federal MCLs and NCWQS. Soil samples were collected during the installation of monitoring wells IR89-MW08, IR89-MW09, and IR89-MW09IW. The samples collected from IR-89MW09 and IR89-MW09IW exhibited high concentrations of 1,1,2,2-PCA and TCE. Surface water samples collected during the immediate response effort also detected 1,1,2,2-PCA, TCE, and other chlorinated compounds. These data strongly suggest there are one or more sources of 1,1,2,2-PCA and TCE remaining at the site, which may be contributing to the contamination of Edwards Creek.

#### **Extent of Impact Through Time**

Aquifers are part of the hydrologic cycle, continually adjusting to the system of which they are a part. Contaminant plumes are somewhat similar in that they are in a state of flux reacting to physical, chemical, and biological changes within the aquifer. A benefit of having multiple rounds of analytical data at a site affords the capability to evaluate the data over time. This becomes particularly helpful during a hydrologic analysis in light of the fact that several hurricanes have impacted MCB, Camp Lejeune in the past several years. The precipitation events from these storms certainly resulted in above-average recharge to the aquifers.

Figures 4 through 7 have been prepared to summarize changes in VOC contamination observed over time. As shown on Figure 4, VOC concentrations in the shallow aquifer (July/August 1996) have changed compared to that which was observed in April 1999 (Figure 5). Over nearly a three-year period, the impact to the shallow aquifer has changed with higher concentrations of VOCs present in the east central portion of the DRMO. In addition, the plume appears to have migrated to the southeast, being more prevalent at monitoring well cluster IR89-MW04.

Figures 6 and 7 provide a comparison of the intermediate aquifer through the same time period. At this depth, the contaminant plume mimics that of the shallow aquifer; showing increased concentrations to the southeast, but also expanding. The plume in the intermediate aquifer has migrated further to the east, with VOCs being detected at monitoring well cluster IR89-MW06, approximately 1,500 feet from the DRMO area.

Ms. Katherine H. Landman November 3, 1999 Page 7

#### **Proposed Sampling Plan**

As the data indicate contaminant source(s) exist at Site 89. The installation of monitoring wells with associated soil and groundwater sampling is proposed. Further, additional surface water samples are proposed in order to provide a temporal correlation of concentrations observed in Edwards Creek with concentrations observed in soil and groundwater. The sampling and monitoring well installation plans were presented at the October 5<sup>th</sup> and 6<sup>th</sup>, 1999 partnering meeting. Monitoring well installation and sampling was conducted in October 1999. The monitoring well and soil boring locations are provided on Figure 8.

Four shallow groundwater monitoring wells and two intermediate groundwater monitoring wells were installed within and adjacent to the DRMO area. In addition to the groundwater samples collected from the six newly installed monitoring wells, groundwater samples were collected from existing monitoring wells. Soil contamination will be characterized by obtaining soil samples at the intervals shown on Figure 8. Surface water and sediment sampling included collecting 11 surface water and 11 sediment samples. Three samples were collected from the drainage ditch leading to Edwards Creek and the remaining eight surface water/sediment samples were collected from Edwards Creek.

Baker appreciates the opportunity to serve LANTDIV on this important project. If you have any questions or comments regarding the information we have presented in this report, please do not hesitate to contact me at (412) 269-2055 or Ms. Kathy M. Chavara, P. E. at (412) 269-2062.

Sincerely,

BAKER ENVIRONMENTAL. INC.

Jeffrey P. Tepsic, P. G.

Project Manager

cc: One copy each:

Mr. Rick Raines, EMD Camp Lejeune

Mr. David Lown, L.G., P.E., NC DENR - Superfund Section

Ms. Diane Rossi, NC DENR - Groundwater Section

Ms. Gena Townsend, USEPA - Waste Management Division

Mr. Jim Dunn, P. E., OHM Corporation

**TABLES** 

#### TABLE 1

## HISTORIC DATA FOR VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FOR SELECT WELLS

#### OPERABLE UNIT NO. 16 (SITE 89) MCB CAMP LEJEUNE, NORTH CAROLINA

|                | July/Aug 96                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May-97                | Apr-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | June/July 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Federal                                                                                       | NCWQS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contaminant    | Phase I RI<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phase II RI<br>(μg/L) | LTM<br>(μg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Immediate<br>Response<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MCLs<br>(μg/L)                                                                                | (μg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acetone        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 2,200J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-Butanone     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 650J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 5301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                           | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 451                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 3,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 818                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 7,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCE            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 7,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1, 19,200 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0                                                                                           | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PCE            | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2,2-PCA    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                             | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| trans-1,2-DCE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cis-1,2-DCE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                             | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2-TCA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PCE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2,2-PCA    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VC             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                           | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| trans-1,2-DCE  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cis-1,2-DCE    | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCE            | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2-TCA      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 2J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PCE            | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2,2-PCA    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acetone        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Meth. Chloride |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| trans-1,2-DCE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    | Commence of the commence of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cis-1,2-DCE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 640                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PCE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | (2-20-0)(3-20-0)(10-0)(3-0)(10-0)(4-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | trans-1,2-DCE cis-1,2-DCE TCE PCE Acetone 2-Butanone VC trans-1,2-DCE TCE PCE 1,1,2-DCE TCE 1,1,2,2-PCA VC trans-1,2-DCE TCE 1,1,2-TCA PCE 1,1,2,2-PCA VC trans-1,2-DCE TCE 1,1,2,2-PCA VC trans-1,2-DCE TCE 1,1,2,2-PCA VC trans-1,2-DCE cis-1,2-DCE TCE 1,1,2-TCA PCE 1,1,2-DCE TCE TCE 1,1,2-DCE TCE TCE 1,1,2-DCE TCE TCE TCE TCE TCE TCE TCE TCE TCE | Contaminant           | Contaminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contaminant         Phase I RI (μg/L)         Phase II RI (μg/L)         LTM (μg/L)           trans-1,2-DCE         177         ND            cis-1,2-DCE         261         ND            TCE         323,1         67            PCE         42.2         4            Acetone         ND          5301           VC         130          5301           trans-1,2-DCE         451          5,800           cis-1,2-DCE         818          7,300           TCE         ND          30,000           VC          9,4          ND           1,1,2,2-PCA         ND              VC                trans-1,2-DCE                trans-1,2-DCE                 trans-1,2-DCE         150          66               trans-1,2-DCE </td <td>  Contaminant   Phase I RI (μg/L)   Phase II RI (μg/L)   LTM (μg/L)   Immediate Response (μg/L)    </td> <td>  Contaminant   Phase I RI   (µg/L)   Phase II RI   (µg/L)   LLS     trans-1,2-DCE   261   ND       100     cis-1,2-DCE   323,1   67       5.0     PCE   42.2   4       5.0     Acetone   ND     650,1   ND   NA     2-Butanone   ND     530,1   720   2.0     trans-1,2-DCE   34,1     7,300   8,800   70     TCE   ND     7,300   8,800   70     TCE   ND     7,300   46,000   NA     VC   13,1,2,2-PCA   ND     30,000   46,000   NA     VC         690   2     trans-1,2-DCE         4,400   100     cis-1,2-DCE         5,50     1,1,2,2-PCA         120   5     1,1,2,2-PCA         47,000   NA     VC   ND     5,50     2.0     trans-1,2-DCE   150     66     5.0     1,1,2-PCA   ND     44     NA     Acetone     ND   133     5.0     VC     43   50     NA     Acetone     ND   133     5.0     TCE     ND   590     70     TCE     100   100   100     TCE     ND   590     70     TCE     ND   590     70     TCE     ND   590     70     TCE     ND   590     5.0     TCE</td> | Contaminant   Phase I RI (μg/L)   Phase II RI (μg/L)   LTM (μg/L)   Immediate Response (μg/L) | Contaminant   Phase I RI   (µg/L)   Phase II RI   (µg/L)   LLS     trans-1,2-DCE   261   ND       100     cis-1,2-DCE   323,1   67       5.0     PCE   42.2   4       5.0     Acetone   ND     650,1   ND   NA     2-Butanone   ND     530,1   720   2.0     trans-1,2-DCE   34,1     7,300   8,800   70     TCE   ND     7,300   8,800   70     TCE   ND     7,300   46,000   NA     VC   13,1,2,2-PCA   ND     30,000   46,000   NA     VC         690   2     trans-1,2-DCE         4,400   100     cis-1,2-DCE         5,50     1,1,2,2-PCA         120   5     1,1,2,2-PCA         47,000   NA     VC   ND     5,50     2.0     trans-1,2-DCE   150     66     5.0     1,1,2-PCA   ND     44     NA     Acetone     ND   133     5.0     VC     43   50     NA     Acetone     ND   133     5.0     TCE     ND   590     70     TCE     100   100   100     TCE     ND   590     70     TCE     ND   590     70     TCE     ND   590     70     TCE     ND   590     5.0     TCE |

#### TABLE 1 (continued)

## HISTORIC DATA FOR VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FOR SELECT WELLS

#### OPERABLE UNIT NO. 16 (SITE 89) MCB CAMP LEJEUNE, NORTH CAROLINA

|                            | T              |                      | 1                     | I .                  | ·                               |                | · · · · · · · · · · · · · · · · · · · |
|----------------------------|----------------|----------------------|-----------------------|----------------------|---------------------------------|----------------|---------------------------------------|
|                            | ÷              | July/Aug 96          | May-97                | Apr-99               | June/July 99                    | Federal        | NCWQS                                 |
| Well ID                    | Contaminant    | Phase I RI<br>(µg/L) | Phase II RI<br>(μg/L) | LTM<br>(μg/L)        | Immediate<br>Response<br>(µg/L) | MCLs<br>(μg/L) | (μg/L)                                |
| SHALLOW WEL                | LS             |                      |                       |                      |                                 |                |                                       |
| IR89-MW08 <sup>(1)</sup>   | Benzene        |                      |                       |                      | 0.51                            | 5.0            | 1.0                                   |
|                            | VC             |                      |                       |                      | 15 %                            | 2.0            | 0.015                                 |
|                            | trans-1,2-DCE  |                      |                       |                      | 21                              | 100            | 70                                    |
|                            | cis-1,2-DCE    |                      |                       |                      | 36                              | 70             | 70                                    |
|                            | TCE            |                      |                       |                      | 27                              | 5.0            | 2.8                                   |
|                            | PCE            |                      |                       |                      | 3#4.2.7 ###                     | 5.0            | 0.7                                   |
|                            | 1,1,2,2-PCA    |                      |                       |                      | 120                             | NA             | NA                                    |
| IR89-MW09 <sup>(1)</sup>   | VC             |                      |                       |                      | SS#270 E&A                      | 2.0            | 0.015                                 |
|                            | trans-1,2-DCE  |                      |                       |                      | 1.200 \$                        | 100            | 70                                    |
|                            | cis-1,2-DCE    |                      |                       |                      | 3425,000                        | 70             | 70                                    |
|                            | TCE            |                      |                       |                      | 1959,000種類                      | 5.0            | 2.8                                   |
|                            | PCE            |                      |                       |                      | 140                             | 5.0            | 0.7                                   |
| INTERMEDIATE               | WELLS          |                      |                       |                      |                                 |                |                                       |
| IR89-MW03IW                | Acetone        |                      | ND                    | 45J                  |                                 | NA             | 700                                   |
|                            | Meth.Chloride  |                      | ND                    | 11 L                 |                                 | 5.0            | 5.0                                   |
|                            | trans-1,2-DCE  |                      | ND                    | 51                   |                                 | 100            | 70                                    |
|                            | cis-1,2-DCE    |                      | ND                    | 4:H220***            |                                 | 70             | 70                                    |
|                            | TCE            |                      | 1400                  | 3610cc               |                                 | 5.0            | 2.8                                   |
| IR89-MW04IW                | Acetone        |                      | ND                    | 55                   |                                 | NA             | 700                                   |
|                            | Meth. Chloride |                      | ND                    | 141                  |                                 | 5.0            | 5.0                                   |
|                            | trans-1,2-DCE  |                      | ND                    | 1889356±             |                                 | 100            | 70                                    |
|                            | cis-1,2-DCE    |                      | ND                    | **** <b>4</b> 00**** |                                 | 70             | 70                                    |
|                            | TCE            |                      | 510                   | 16901                |                                 | 5.0            | 2.8                                   |
| IR89-MW09IW <sup>(1)</sup> | VC             |                      |                       | <b></b>              |                                 | 2.0            | 0.015                                 |
|                            | Acetone        |                      |                       |                      | 12J                             | NA             | 700                                   |
|                            | trans-1,2-DCE  |                      | ***                   |                      | 7.8                             | 100            | 70                                    |
|                            | cis-1,2-DCE    |                      |                       |                      | 26                              | 70             | 70                                    |
|                            | TCE            |                      |                       |                      | 200                             | 5.0            | 2.8                                   |
|                            | 1,1,2,2-PCA    |                      |                       |                      | 25                              | NA             | NA                                    |

Notes:

Indicates an exceedence of Federal MCL or NCWQS.

Concentrations are in micrograms per liter.

J = Estimated Value

NA = Not Applicable - no standard available.

ND = Not Detected

-- = Not Sampled.

(1) This monitoring well was installed for the June/July Immediate Response Effort.

TABLE 2
HISTORIC DATA FOR VOLATILE ORGANIC COMPOUNDS IN SURFACE WATER
OPERABLE UNIT NO. 16 (SITE 89)
MCB CAMP LEJEUNE, NORTH CAROLINA

|           |                 | July-Aug-96             | April 1999       | June/July 99                   | AWQS           | NCWQS  |
|-----------|-----------------|-------------------------|------------------|--------------------------------|----------------|--------|
| Sample ID | Contaminant     | Phase I RI              | LTM              | Immediate                      | AwQS<br>(μg/L) | μg/L)  |
|           |                 | (μ <b>g/L</b> )         | (μ <b>g/L</b> )  | Response (µg/L)                | (μg/L)         | (µg/L) |
| IR89-SW01 | Chloroform      | 0.3*                    |                  |                                | 5.7            | NA     |
|           | cis-1,2-DCE     | 2*                      | **               |                                | NA             | NA     |
|           | TCE             | 3:8*/(3J)E              |                  |                                | 2.7            | 92.4   |
|           | PCE             | 0.2*                    |                  |                                | 0.8            | NA     |
| IR89-SW02 | Chloroform      | 0.2*                    |                  |                                | 5.7            | NA     |
| ł         | VC              | (25)                    |                  |                                | 2.0            | 525    |
|           | trans-1,2-DCE   | 37*                     |                  |                                | NA             | NA     |
| 1         | cis-1,2-DCE     | 48*                     |                  |                                | NA             | NA     |
| l         | 1,2-DCE (total) | (120)                   |                  |                                | NA             | NA     |
|           | TCE             | 7-3*/(18)               |                  |                                | 2.7            | 92.4   |
| Ì         | PCE             | 0.2*                    |                  |                                | 0.8            | NA     |
|           | 1,1,2,2-PCA     | (150J) <sub>[4-7]</sub> |                  |                                | 0.17           | 10.8   |
| IR89-SW03 | Benzene         | ND                      |                  | 12 157 13                      | 1.2            | 71.4   |
|           | Chlorobenzene   | ND                      |                  | 5.9                            | 680            | NA     |
|           | Chloroform      | 0.1*                    |                  | ND                             | 5.7            | NA     |
|           | Toluene         | ND                      |                  | 6.2                            | 6800           | NA     |
| 1         | VC              | (21)                    |                  | 427. 4                         | 2.0            | 525    |
| i         | trans-1,2-DCE   | 31*                     |                  | 28                             | NA             | NA     |
| l         | cis-1,2-DCE     | 44*                     |                  | 42                             | NA             | NA     |
|           | 1,2-DCE (total) | (100)                   |                  | ND                             | NA             | NA     |
|           | 1,1-DCE         | ND                      |                  | * * 74 * ·                     | 0.057          | NA     |
| į         | TCE             | £ 6.4*/(16) £           |                  | 8.8                            | 2.7            | 92.4   |
| ĺ         | PCE             | 0.2*                    |                  | ND                             | 0.8            | NA     |
|           | 1,1,2,2-PCA     | * (130J).               |                  | 15                             | 0.17           | 10.8   |
| IR89-SW04 | Acetone         | ND                      | 6J               | 6.4J                           | NA             | NA     |
|           | Chloroform      | 0.4*                    | ND               | ND                             | 5.7            | NA     |
|           | VC              | ND                      | . 46             | ativism in 24 and other        | 2.0            | 525    |
|           | trans-1,2-DCE   | 19*                     | 18               | 35                             | NA             | NA     |
|           | cis-1,2-DCE     | 52*                     | 56               | 110                            | NA             | NA     |
|           | 1,2-DCE (total) | (78)                    | ND               | ND                             | NA             | NA     |
|           | 1,1-DCE         | ND                      | ND               | 1.0 (±1.2) (± <del>12.</del> ) | 0.057          | NA     |
| l         | TCE             | 32.9*/(26) =            | ± ±40 ± ±        | 2000 1800 1800 1800 P          | 2.7            | 92.4   |
|           | 1,1,2-TCA       | ND                      | ing the state of | 7.594×12.7. 大重流。               | 0.6            | NA     |
|           | PCE             | 0.2*                    | ND               | ND                             | 0.8            | NA     |
|           | 1,1,2,2-PCA     | (72)                    | 44 4             | Sarvaga, p. 84 may 2020 and    | 0.17           | 10.8   |

#### TABLE 2 (continued)

#### HISTORIC DATA FOR VOLATILE ORGANIC COMPOUNDS IN SURFACE WATER **OPERABLE UNIT NO. 16 (SITE 89)** MCB CAMP LEJEUNE, NORTH CAROLINA

|           |                    | July-Aug-96     | April 1999      | June/July 99    | AWOS            | NOWOS  |
|-----------|--------------------|-----------------|-----------------|-----------------|-----------------|--------|
| Sample ID | Contaminant        | Phase I RI      | LTM             | Immediate       | AWQS            | NCWQS  |
|           |                    | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | Response (μg/L) | (μ <b>g/L</b> ) | (μg/L) |
| IR89-SW05 | Chloroform         | 0.3*            |                 |                 | 5.7             | NA     |
| i         | trans-1,2-DCE      | 15*             |                 |                 | NA              | NA     |
|           | cis-1,2-DCE        | 44*             |                 |                 | NA              | NA     |
|           | 1,2-DCE (total)    | (78)            |                 |                 | NA              | NA     |
|           | TCE                | 27.3*/(24)      |                 |                 | 2.7             | 92.4   |
|           | PCE                | 0.1*            | ***             |                 | 0.8             | NA     |
|           | 1,1,2,2-PCA        | (80)            |                 |                 | 0.17            | 10.8   |
| IR89-SW06 | TCE                |                 | 2J              |                 | 2.7             | 92.4   |
|           | 1,1,2,2-PCA        |                 | 2J              |                 | 0.17            | 10.8   |
| IR89-SW07 | Acetone            | ND              | 8J              |                 | NA              | NA     |
|           | cis-1,2-DCE        | 27*             | ND              |                 | NA              | NA     |
|           | trans-1,2-DCE      | 21*             | ND              |                 | NA              | NA     |
|           | TCE                | 14.8*           | 21              |                 | 2.7             | 92.4   |
|           | PCE                | 1.2*            | ND              |                 | 0.8             | NA     |
|           | 1,1,2,2-PCA        | ND              | 3J-12           | ma-del          | 0.17            | 10.8   |
| IR89-SW08 | PCE                | 0.4*            |                 |                 | 0.8             | NA     |
| IR89-SW09 | Chloroform         | 0.4*            |                 |                 | 5.7             | NA     |
|           | trans-1,2-DCE      | 16*             |                 |                 | NA              | NA     |
|           | cis-1,2-DCE        | 44*             |                 |                 | NA              | NA     |
|           | TCE                | 28.5*           |                 |                 | 2.7             | 92.4   |
|           | PCE                | 0.2*            |                 |                 | 0.8             | NA     |
| IR89-SW10 | Chloroform         | 0.4*            |                 |                 | 5.7             | NA     |
|           | trans-1,2-DCE      | 15*             |                 | 4-              | NA              | NA     |
|           | cis-1,2-DCE        | 43*             | 10.00           |                 | NA              | NA     |
|           | TCE                | *+ 27.9*        |                 |                 | 2.7             | 92.4   |
|           | PCE                | 0.1*            |                 |                 | 0.8             | NA     |
| IR89-SW11 | Acetone            | ND              | ND              | 13J             | NA              | NA     |
|           | Methylene Chloride | 27.6*           | 2J              | ND              | NA              | NA     |
|           | VC                 | 0.4*            | 32              | - Sec. 1924 (4) | 2.0             | 525    |
|           | trans-1,2-DCE      | 14*             | 45              | 36              | NA              | NA     |
|           | cis-1,2-DCE        | 43*             | 140             | 110             | NA              | NA     |
|           | TCE                | 是 27.61         | 147197          | 445_4130 \$7144 | 2.7             | 92.4   |
|           | 1,1,2-TCA          | ND              |                 | 2.747           | 0.6             | NA     |
|           | PCE                | 0.2*            | ND              | ND              | 0.8             | NA     |
|           | 1,1,2,2-PCA        | ND              | (15. J. 20 T. ) | AL 78.15        | 0.17            | 10.8   |

Notes:

Indicates an exceedence of Federal AWQS or NCWQS.
Concentrations are in micrograms per liter.
NA = Not Applicable - no standard available.

ND = Not Detected.

<sup>\* =</sup> August 1996 Phase I RI mobile lab data

<sup>( ) =</sup> Fixed base analysis from Phase I RI

<sup>-- =</sup> Not Sampled.

#### TABLE 3

## POSITIVE DETECTIONS FOR VOLATILE ORGANIC COMPOUNDS IN SOIL JUNE/JULY 1999

#### OPERABLE UNI NO. 16 (SITE 89) MCB CAMP LEJEUNE, NORTH CAROLINA

|               |                | June/July 99                     | RBCs                  | RBCs                   | Site-Specific                                      |
|---------------|----------------|----------------------------------|-----------------------|------------------------|----------------------------------------------------|
| Sample ID     | Contaminant    | Immediate<br>Response<br>(µg/kg) | Industrial<br>(µg/kg) | Residential<br>(µg/kg) | Soil to<br>Groundwater<br>Transfer SSLs<br>(µg/kg) |
| IR89-MW08-01  | Acetone        | 80J                              | 204,400,000           | 7,821,429              | 2834                                               |
| IR89-MW08-02  | Acetone        | 5,900                            | 204,400,000           | 7,821,429              | 2834                                               |
|               | 1,1,2,2-PCA    | 15J                              | 28,616                | 3,194                  | 7                                                  |
|               | Xylene (total) | 26Ј                              | 4,088,000,000         | 156,428,571            | 12494                                              |
| IR89-MW09-01  | trans-1,2-DCE  | 62                               | 40,880                | 1,564.3                | 540                                                |
|               | cis-1,2-DCE    | 220                              | 20,440,000            | 3,821,443              | 499                                                |
|               | TCE            | 1,000                            | 520,291               | 58,066                 | 34                                                 |
|               | 1,1,2-TCA      | 160                              | 100.4                 | 11.2                   | 50                                                 |
|               | 1,1,2,2-PCA    | 29,000                           | 28,616                | 3,194                  | 7                                                  |
| IR89-MW09-02  | trans-1,2-DCE  | 670                              | 40,880                | 1,564.3                | 540                                                |
|               | cis-1,2-DCE    | 2,400                            | 20,440,000            | 3,821,443              | 499                                                |
|               | TCE            | 2,000                            | 520,291               | 58,066                 | 34                                                 |
|               | 1,1,2-TCA      | 130J                             | 100.4                 | 11.2                   | 50                                                 |
|               | PCE            | 360                              | 110.1                 | 12.3                   | 19                                                 |
|               | 1,1,2,2-PCA    | 27,000                           | 28,616                | 3,194                  | 7                                                  |
| IR89-MW09-02D | trans-1,2-DCE  | 530                              | 40,880                | 1,564.3                | 540                                                |
|               | cis-1,2-DCE    | - 1,800                          | 20,440,000            | 7,821,443              | 499                                                |
|               | TCE            | 1,200                            | 520,291               | 58,066                 | 34                                                 |
|               | PCE            | 280                              | 110.1                 | 12.3                   | 19                                                 |
|               | 1,1,2,2-PCA    | 26,000                           | 28,616                | 3,194                  | 7                                                  |

Notes:

- 1) Indicates an exceedence of Federal industrial or residential RBC or a site spcific soil screening level.
  - 2) Concentrations are in micrograms per kilogram.
  - 3) Site-specific soil screening values are calculated using the USEPA soil screening guidance for organics. Note that there is no guidance for 1,1,2,2-PCA. Therefore, the input value for PCE was used. If the Region III tap water RBC for 1,1,2,2-PCA had been used in the calculation, the soil to groundwater transfer SSL would have been 1 micrograms/kilogram.

# TABLE 4 USEPA SOIL SCREENING GUIDANCE CALCULATION OF SITE-SPECIFIC SOIL SCREENING LEVELS FOR ORGANICS OPERABLE UNIT NO. 16 (SITE 89) MCB CAMP LEJEUNE, NORTH CAROLINA

 $\label{eq:continuous_continuous} \text{Equation:} \quad C_{\text{soil}} = C_{\text{oW}} \text{.} \qquad \left[ \frac{K_{\text{s}} + (n_{\text{w}} + n_{\text{s}}H')}{P_{\text{b}}} \right] df$ 

| Soil Screening Levels (   | ug/kg) |
|---------------------------|--------|
| 1,1,2,2-tetrachloroethane | 7      |
| 1,1,2-trichloroethane     | 50     |
| cis-1,2-dichloroethene    | 499    |
| trans-1,2-dichloroethene  | 540    |
| tetrachloroethene         | 19     |
| trichloroethene           | 34     |
| acetone                   | 2834   |
| xylene (total)            | 12494  |

| Calculation Input Table                                       |                                    |               |                                    |  |  |
|---------------------------------------------------------------|------------------------------------|---------------|------------------------------------|--|--|
| Definition                                                    | Units                              | Value         | Source                             |  |  |
| C <sub>sell</sub> - Calculated soil concentration for soil    | mg/kg                              |               | Calculated                         |  |  |
| C <sub>GW</sub> - Applicable groundwater target concentration | mg/L                               |               |                                    |  |  |
| 1,1,2,2-tetrachloroethane (none; sse value for PCE)           | ]                                  | 0,0007        | NC 2L Standard                     |  |  |
| 1.1.2-trichloroethane                                         | 1                                  | 0.005         | Federal MCL                        |  |  |
| cis-1,2-dichloroethene                                        | 1                                  | 0.07          | NC 2L Standard                     |  |  |
| trans-1,2-dichloroethene                                      |                                    | 0.07          | NC 2L Standard                     |  |  |
| tetrachloroethene                                             | 1                                  | 0.0007        | NC 2L Standard                     |  |  |
| trichloroethene                                               | 1                                  | 0.0028        | NC 2L Standard                     |  |  |
| acetone                                                       |                                    | 0.7           | NC 2L Standard                     |  |  |
| xylene (total)                                                | ì                                  | 0.53          | NC 2L Standard                     |  |  |
| df - Dilution Factor                                          | unitless                           | 20            | USEPA, 1996                        |  |  |
| K <sub>s</sub> - Soil-water partion cofficient                | L/kg                               | K = Koc x foc |                                    |  |  |
| 1,1,2,2-tetrachloroethane                                     | 1 -                                | 0.316         |                                    |  |  |
| 1.1.2-trichloroethane                                         | 1                                  | 0.3           |                                    |  |  |
| cis-1,2-dichloroethene                                        | 1                                  | 0.142         | 1                                  |  |  |
| trans-1,2-dichloroethene                                      | 1                                  | 0.152         |                                    |  |  |
| tetrachloroethene                                             |                                    | 1.06          |                                    |  |  |
| trichloroethene                                               |                                    | 0.3772        |                                    |  |  |
| acetone                                                       | 1                                  | 0.0023        |                                    |  |  |
| xylene (total)                                                |                                    | 0.96          |                                    |  |  |
| Kec - Soil organic carbon-water partion coefficient           | L/kg                               |               |                                    |  |  |
| 1,1,2,2-tetrachloroethane                                     |                                    | 79            | USEPA, 1996                        |  |  |
| 1,1,2-trichloroethane                                         |                                    | 75            | USEPA, 1996                        |  |  |
| cis-1,2-dichloroethene                                        |                                    | 35.5          | USEPA, 1996                        |  |  |
| trans-1,2-dichloroethene                                      | 1                                  | 38            | USEPA, 1996                        |  |  |
| tetrachloroethene                                             | 1                                  | 265           | USEPA, 1996                        |  |  |
| trichloroethene                                               |                                    | 94.3          | USEPA, 1996                        |  |  |
| acetone                                                       | 1                                  | 0.575         | USEPA, 1996                        |  |  |
| xylene (total)                                                |                                    | 240           | USEPA, 1996                        |  |  |
| fac - Fraction organic carbon in vadose zone soil             | Scarbon/Esoil                      | 0.004         | Base-specific value <sup>(1)</sup> |  |  |
| nw - Water filled soil porosity (vadose zone soil)            | Lwater/Lsoil                       | 0.3           | USEPA, 1996                        |  |  |
| na - Air filled soil porosity (vadose zone soil)              | L <sub>ui</sub> /L <sub>soil</sub> | 0.13          | USEPA, 1996                        |  |  |
| H' - Henry's Law Constant                                     | unitless                           |               |                                    |  |  |
| 1,1,2,2-tetrachloroethane                                     |                                    | 0.01558       | USEPA, 1996                        |  |  |
| 1,1,2-trichloroethane                                         | 1                                  | 0.03731       | MA Dept. of Env. Protection, 1994  |  |  |
| cis-1,2-dichloroethene                                        | 1                                  | 0.167         | USEPA, 1996                        |  |  |
| trans-1,2-dichloroethene                                      | 1                                  | 0.385         | USEPA, 1996                        |  |  |
| tetrachloroethene                                             |                                    | 0.754         | USEPA, 1996                        |  |  |
| trichloroethene                                               | Ì                                  | 0.37392       | USEPA, 1996                        |  |  |
| acetone                                                       | 1                                  | 1.59E-03      | USEPA, 1996                        |  |  |
| xylene (total)                                                | 1                                  | 2.16E-01      | MA Dept. of Env. Protection, 1994  |  |  |
| Pb - Bulk Density                                             | kg/L                               |               | USEPA, 1996                        |  |  |

Note: USEPA, 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128. May 1996.

Massachusetts Department of Environmental Protection, 1994, Background documentation for the development of the MCP numerical standards.

<sup>(1)</sup> for value used in these caculations is based on average of for values obtained from Site 88 and Site 36 at MCB, Camp Lejeune.

**FIGURES** 

















ATTACHMENT A

## JULY 1999 FIELD INVESTIGATION PHOTOGRAPHS OPERABLE UNIT NO. 16, SITE 89 MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA



Looking at base of Covered Wash Area, Rip-rap area located over former UST area.



Looking West, Standing adjacent to southern DRMO fence while installing Monitoring Well Cluster IR89MW09.

02569A ABB2Y



Looking North within the DRMO, standing immediately adjacent to Oil Changing Area



Looking Southeast at Covered Wash Area, standing adjacent to IR89-MW02

## **Document Page Holder**

| JOC. NAME:  | 2569A<br>Photos 21 | AB B27 |
|-------------|--------------------|--------|
| FIGURE NO.: | Plutos 2/          | 095    |
|             |                    | BOX    |
| DOC. NAME:  |                    |        |
| FIGURE NO.: |                    |        |
|             |                    | BOX    |
| DOC. NAME:  |                    |        |
| FIGURE NO.: |                    |        |
|             |                    | BOX    |
| DOC. NAME:  |                    |        |
| FIGURE NO.: |                    |        |
|             |                    | BOX    |
| DOC. NAME:  |                    |        |
| FIGURE NO.: |                    |        |
|             |                    |        |

Z = B & W 11 X 17

Y = COLOR

X = OVERSIZE